PHENIX Small System Summary Maya SHIMOMURA for the PHENIX Collaboration Nara Women's University ### THE PHENIX EXPERIMENT - Data taking is completed in 2016. - Collaboration is actively working for data analysis - Data with 9 collision species and 9 collision energies have been obtained. # Time evolution The matter produced in the high energy heavy ion collision is expected to undergo several stages from the initial hard scattering to the final hadron emission. Need a comprehensive understanding from initial hard scattering to final freeze out. # R_{AA} for hadrons & γ in Au + Au $$R_{AA} = \frac{yield(AuAu)}{N_{coll} \cdot yield(pp)}$$ - γ is not \rightarrow no interaction with QGP. - pQCD calculations agree well to data in p+p. ## Contents # Focus on Small systems - $-\pi^0$ R_{xA} in pAl, pAu and 3 HeAu - π^0 and γ R_{dAu} for experimental N_{coll} - -φ and π^0 R_{AB} - J/ψ , $\psi(2S)R_{AB}$ - $-v_2$ and v_3 with 3x2PC # π^0 R_{xA} in pAl, pAu, dAu and ³HeAu KT broadening? Why this order? -some bias? At low p_T at 0-20 % - $-R_{vA} > \sim 1$ - Target difference (Al/Au): p+Al < p+Au - Projectile difference (p/d/3He): 3 He+Au < d+Au < p+Au - The peak shifts to more right with the larger system. # π^0 R_{xA} in pAl, pAu, dAu and ³HeAu KT broadening? Why this order? -some bias? Radial flow effect? At low p_T at 0-20 % - $-R_{xA} > 1$ - Target difference (Al/Au): p+Al < p+Au - Projectile difference (p/d/³He): ³He+Au < d+Au < p+Au - The peak shifts to more right with the larger system. # PRC 105, 064902 # π^0 R_{xA} in pAl, pAu, dAu and ³HeAu At high p_T ($p_T > 10 \text{ GeV/c}$) - R_{xA} < 1 at central - $R_{xA} \sim 1$ at mid central - $R_{xA} > 1$ at peripheral Central collision events with high p_T particles may incorrectly categorized as peripheral events due to energy conservation. → Corrected Suppression is observed at very high p_T at central collisions for small systems. - → Energy loss? - → MC-Glauber Ncoll is really OK for peripheral ?? # π^0 and γ R_{dAu} with MC-Glauber N_{coll} There seems to be some bias on MC-Glauber Ncoll calculation at peripheral. Even γ R_{dAu} shows the enhancement at most peripheral, amount of that matches that of π^0 R_{dAu} . \rightarrow Introduce experimentally determined N_{coll} $$\langle N_{coll}^{exp} angle = rac{(rac{d^2N^\gamma}{dp_Td\eta})_{dAu}}{(rac{d^2N^\gamma}{dp_Td\eta})_{pp}}$$ # π^0 R_{dAu} with experimental N_{coll} - After the correction, π^0 R_{dAu} with p_T integrated [7.5-17 GeV/c] is less than 1 for all measured centralities. - It shows suppression in central collisions clearly. → QGP-like matter? # ϕ R_{xA} in p+Al, p+Au, d+Au and ³He+Au ^{*}The normalization uncertainty from p+p is about 9.7%. ### At MB - R_{xA} are ~1 within large uncertainties. At 0-20 % - Ordering is observed: ³He+Au < d+Au < p+Au - \rightarrow Same as π^0 R_{xA} # φ R_{xA} in p+Al, p+Au, d+Au and ³He+Au *The normalization uncertainty from p+p is about 9.7%. ### At MB - R_{xA} are ~1 within large uncertainties. At 0-20 % - Ordering is observed: ³He+Au < d+Au < p+Au - \rightarrow Same as π^0 R_{xA} # ϕ R_{xA} in p+Al, p+Au, d+Au and ³He+Au ^{*}The normalization uncertainty from p+p is about 9.7%. ### At MB - R_{xA} are ~1 within large uncertainties At 0-20 % - Ordering is observed: ³He+Au < d+Au < p+Au - \rightarrow Same as π^0 R_{xA} Comparison of ϕ to π^0 R_{xA} pAl pAu dAu ³HeAu Peripheral: ϕ to π^0 agree well. # Comparison of ϕ to π^0 R_{xA} Central: Strangeness enhancement? Peripheral: ϕ to π^0 agree well. The ϕ meson R_{xA} seems to be higher than π^0 R_{xA} in central collision possibly due to strangeness enhancement. \rightarrow Cannot be concluded due to the large uncertainty. PRC 102, 014902 (2020) forward p/3He-going - CNM effects seem to be dominant. - Small final effect at Au-going side(bkwd) while no final effect at p/ $^3\mbox{He-going side}(\mbox{fwd})$ # Comparison of J/ ψ to $\psi(2S)R_{pAu}$ in p+Au - Similar suppression is observed at p(d)-going side(fwd). - Only $\psi(2S)$ suppress at Au-going side but not J/ψ . - Transport-model describes the relative modification well but underpredicts the suppression for $\psi(2S)$. - \rightarrow The suppression of $\psi(2S)$ seems to be due to the final state effects. # J/ψ, ψ(2S) R_{AB} at RHIC and LHC - No significant difference between PHENIX, ALICE and LHCb. - → No energy dependence. Very similar final effect are observed. # v₂ with 3x2PC at small systems PRC 105, 024901 (2022) BBCS-FVTXS-CNT Acceptance combination is same as Nat. Phys - Combination of 3 detectors (BBCS-FVTXS-CNT) are used for 2PC method to obtain v_2 . - The 3x2PC results confirm the PHENIX Nature Physics results. - → Consistent with the QGP droplet picture. # v₂ with 3x2PC at small systems ### PRC 105, 024901 (2022) - Forward –Backward combination including more non flow gives larger v₂ than Backward – Backward combination (Nat. Phys). - Rapidity selection is very important to understand the flow in small systems. - This explains the differences between STAR and PHENIX results. # v₃ with 3x2PC at small systems PRC 105, 024901 (2022) FVTXN BBCN - v_3 is also obtained with same 3x2PC method as v_2 . - The 3x2PC results confirm the PHENIX Nature Physics results. - → Consistent with the QGP droplet picture. # More detailed study for v₂ at small systems with 3x2PC #### arXiv:2203.09894 - Systematic study of v₂ on small systems (p+Au, d+Au, ₃He+Au, from peripheral to central) are conducted. - v₂ at p+p is also measured. - Non-zero v₂ - v₂{BB} and v₂{BF} shows difference. - AMPT w sm doesn't reproduce v_2 quantitatively but show the difference of $v_2\{BB\}$ and $v_2\{BF\}$. # Summary PHENIX data in pAI, pAu, dAu and ³HeAu at $\sqrt{s_{NN}}$ =200GeV have been analyzed. - ϕ to π^0 R_{xA} - Cronin effect and radial flow qualitatively explains the results. - Suppression is observed at central - Strangeness enhancement is not observed clearly so far in any small system. Need more precise study. - J/ψ R_{AB} and ψ (2S) in dAu at forward/backward - Small final effect for J/ψ R_{AB} at Au-going side is seen. - $\psi(2S)$ suppress at Au-going side but not J/ψ . - RHIC and LHC agrees well. - v_2 and v_3 - Previous v₂ and v₃ results are confirmed - 3x2PC describes the possible differences with different combination of 3 detectors. - Rapidity selection changes v2 a lot. - v2 for mid and peripheral centralities are also measuered. - Non-zero v2 at 3x2PC methods are observed. $\rightarrow \pi^0$ R_{xA} and v₂ results shows the central collisions in the small system except p+p seem to create QGP-like matter at RHIC energy but not exactly same as large system. # Back Up # Comparison with model calculations Non of these model calculations can explain all data simultaneously. ### Direct photon enhancement with system size Larger system has more enhancement at low p_T and it may be seen at pAu most central. \rightarrow relate to QGP size? Direct photon puzzle together with large v2 emissions. → might be hadronization photons ?? # K^{*0} , ϕ and π^0 R_{AB} in pAl and 3 HeAu K^{*0} , ϕ and π^0 all agree well. - Strangeness enhancement is not observed clearly. Proton shows enhancement at 0-20% in ³He+Au. → Qualitatively agrees with Radial flow/Recombination # φ R_{AB} in pAl, pAu, dAu, and ³HeAu p_{_} (GeV/c) Dominant production process seems to change between pAl and pAu. p_{_} (GeV/c) p_{_} (GeV/c) p_ (GeV/c) # More detailed study for v_2 at small systems #### arXiv:2203.09894 - v2{BB} has no smooth connection around dN/d η ~10. - AMPT-model calculations don't reproduce the qualitative trends of $v_2\{BB\}$ while it shows some agreement for the trends of $v_2\{BF\}$. # v_n with 3x2PC method - Advantage of 2PC: Cancelling out possible detector and beam optics effects by the event-mixing technique - Combine three 2PCs to obtain v_n due to the asymmetric collision systems $$v_n^{\rm A} = \sqrt{\frac{C_n^{\rm AB} \times C_n^{\rm AC}}{C_n^{\rm BC}}} \quad \ C_n^{\rm AB} = \langle \cos n \Delta \phi \rangle$$ A, B, C: kinematic ranges - Measure mid-rapidity v_n with the following rapidity combinations - Mid-Back(-3.9< η <-3.1)-Back(-3.0< η <-1.0) : BB - · Acceptance combination used in the Nature analysis - Mid-Back (-3.0< η <-1.0)-For (1.0< η <3.0) : BF Borrow from Takahito Todoroki's talk at sQM.